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Abstract

This paper studies control problems of sampled data systems which are subject to random sample

rate variations and delays. Due to the rapid growth of the use of computers more and more systems

are controlled digitally. Complex systems such as space telerobotic systems require the integration

of a number of sub-systems at different hierarchical levels. While many sub-systems may run on a

single processor, some sub-systems require their own processor or processors. The sub-systems are

integrated into functioning systems through communications. Comunications between processes sharing

a single processor are also subject to random delays due to memory management and interrupt latency.

Communications between processors involve random delays due to network access and to data collisions.

Furthermore, all control processes involvc delays due to causal factors in measuring devices and to signal

processing.

Traditionally, sampling rates are chosen to meet the worst case communication delay. Such a strategy

is wasteful as the processors are then idle a great proportion of the time; sample rates are not as high

as possible resulting in poor performance or in the over specification of control processors; there is the

possibility of missing data no matter how low the sample rate is picked.

Randomly sampled systems have been studied since later 1950's, however, results on this subject are

very limited and they are not applicable to practical systems. This paper studies asymptotical stability

with probability one for randomly sampled multi-dimensional linear systems. A sufficient condition for

the stability is obtained. This condition is so simple that it can be applied to practical systems. A design

procedure is also shown.

1 Introduction

Many complex systems today involve the integration of a number of different subsystems at various hierar-

chical levels. Examples of hierarchical subsystems are, for example, in the case of spacecraft:

Level 1 - Assignment of systems to tasks;

Level 2 - Assignment of subsystems to task systems, such as the shuttle manipulator, one of more cameras,

an astronaut on EVA;

Level 3 - Control of individual subsystems, cameras comprised of pan tilt, zoom, focus, feature tracking,

exception warning; or control of machine tools comprised of spindle, table, tool changer, gauge;

Level 4 - Control of elements, control of manipulator joints, end-effector force measurement, machine

tool spindle drive, elevator motor drive, submarine plane control.

These systems all comprise many components which may be ranked hierarchically. Many of the compo-

nents are now computer controlled and are integrated by means of digital busses or networks. The integration
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of these components into functioning feedback systems, camera - force-sensor - manipulator roll sensor, pitch
sensor - main propulsion - planes, implies in addition to data communications, communication rates.

In the case of communication networks, the data rates of point to point communication busses are well

known. The rates at which a computer can respond to communication data interrupts requests add a variance
to the data rates. In the case of shared networks, such as Ethernet, data collisions add considerable variance

to the data rate frequently exceeding the data rate itself. However, these shared networks are very attractive
from both the reliability and flexibility standpoints.

Because of their flexibility in programming and speed in computing, digital computers are now regularly

employed as integral components of dynamic feedback control systems. They are easily programmed to

realize desired compensators. Due to the discrete nature of digital computers, variables in dynamic systems
are sampled and quantized before sending to the computers. The well established discrete time system theory

(e.g., [8]) provides methods to analyze the behavior of sampled data systems, based on the assumption that

the sampling rates are fixed and the same, and the sampling operations on different channels of the systems
are synchronized. If the sampling rates are fixed but different on different channels, known as multi-rate

sampling, the system analyses are simple if the sampling rates have integral ratio_ [6, 10].

Due to random delays in measurement devices, signal processing, interrupt latency, priority scheduling,
conditional branching, network communications, etc., sampling rates vary randomly in many systems, and

the system performance could be expected to be improved if a theory supporting random sampling rates

was used. Systems with random sampling processes are called randomly sampled systems. The behavior

of a randomly sampled system is, presumably, related to the statistical properties of the random sampling

processes as well as system parameters. Randomly sampled systems have been studied by Kalman [11],
Leneman [16], Kushner and Tobias [15], Agniel and Jury [2], and others. One of the major motivations

for studying randomly sampled systems in late 1950's and early 1960's was the introduction of digital

computers in control systems. However as the speed of computers improved dramatically, time delays
caused by computers became practically negligible in simple single processor controlled systems compared

to other delays, and research on randomly sampled systems came to an end. Nowadays, development of

computer controlled systems has reached beyond the stage of single processor control. Many subsystems are

integrated into large systems. Furthermore, many complex dynamic systems impose demanding computation
requirement. For example, computation time becomes a bottleneck in the implementation of dynamic control

algorithms of multi-joint robot manipulators. Delay caused by computation and communication is no longer
a negligible factor.

Early researchers in the area of randomly sampled systems primarily considered stability conditions

of the systems. Their work is briefly summarized below. Kalman carried out a comprehensive study of

sampling systems [11]. He classified sampling into six categories: conventional sampling, nonsynchronous

sampling, multiple-order sampling, multi-rate sampling, noninstantaneous sampling, and random sampling.

For randomly sampled systems, Kalman showed that if the second moment of the output of an autonomous
system is stable, the second moment of the output remains bounded when a bounded input is applied

to the system. Based on his state space method [13], Kalman [12] also discussed the regulator problem
and stability of a linear system described by independent random functions. This class of systems include

randomly sampled systems. Thus the stability conditions obtained for this class of systems are applicable

for randomly sampled systems. Kushner and Tobias [15] studied an autonomous linear system with linear

and nonlinear feedback. Using a stochastic Lyapunov function, criteria for stability with probability one

and s-th moment stability (s > 0) were obtained for scalar linear systems, and criteria for stability with

probability one and second moment stability were obtained for multi-dimensional linear systems. Agniel

and Jury [2] investigated asymptotic stability with probability one of a linear system with a saturating type
nonlinear component. A computational procedure was provided to determine the largest stability sector of

the nonlinearity for asymptotic stability with probability one. Using a stochastic Lyapunov function, Agniel

and Jury in another paper [1] gave a condition for the asymptotic stability with probability one and the
second moment asymptotic stability for single-input single-output multi-dimensional linear systems. They

also showed that if an autonomous system exhibits asymptotic stability with probability one, the system is

almost surely bounded input-bounded output. Leneman [16] studied a single-input single-output first order

linear system with feedback. He derived the second moment of the output for the cases with and without

input. The input is a stationary stochastic process independent of the sampling process. Consequently, a

condition for the second moment stability was given. Assuming the independence of the sampling times and
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the signals, Dannenberg and Melsa [7] took the expectation of a linear system equation, obtaining a system
equation of expectation of the states and outputs. The first moment stability analysis is similar to that of

deterministic sampled-data systems. An example of a spacecraft control problem was given, in which it is

assumed that there is a probability of missing messages. The problem of random sampling of a random

signal was studied by Bergen [4] and Leneman [17]. Their focus was on deriving expressions of the spectral
density of a random signal after a random sampling.

This paper studies the stability of randomly sampled systems in relation to the random sampling pro-

cesses. Though Kalman [11] and Kushner [15] have obtained necessary and sufficient conditions for the

stability in the second moment, it is not so easy to apply these conditions to practical systems. This paper

studies asymptotic stability with probability one and gives a necessary and sufficient condition for one-

dimensional systems and a sufficient condition for multi-dimensional systems. These conditions are easy to
verify for given sampling distributions and are thus applicable to practical systems.

In the next section, the asymptotical stability with probability one is defined. A sufficient condition

is given for multi-dimensional linear time-invariant randomly sampled systems which is also necessary for

one-dimensional systems. A design procedure todetermine feedback gains is obtained in Section 3. If we use

a nonlinear compensator such as a computed torque controller for a robotic control system, then we would

have a set of simple two-dimensional linear systems. In Section 4, the stability of such two-dimensional

systems is considered and the design prcedure is shown for a Bernoulli distribution, a uniform distribution
and a mixed uniform distribution.

2 Stability

Consider following linear time-invariant control system.

x(t) = Ax(t) + Bu(t), (1)

where x is an n-dimensional state vector, u an r-dimensional control vector, and A and B are n × n and

n × r matrices, respectively. For this system, we apply a constant state feedback input

u(t) = K_(tk ), (2)

from t = tk to t = tk+l(= tk + Ak), where K is an r × n matrix. Then x(tk+l) is given as follows.

X(tk-t-1 ) = ((I)(mk) -Jr _(Ak)I()X(tk), (3)

where

fO Ak• (Ak) = exp(AAk), and @(Ak) = exp(Ar)drB.

Sampling interval A k is assumed to be subject to some probability distribution function F(A) or distribu-

tion density function f(A) and Ai and Aj(i _ j) are statistically independent of each other. For simplicity,
we write Eq. (3) as follows

zk+a = r(ak)xk. (4)

In this paper, we use the following matrix norm which is compatible with usual Euclid norm for vectors:

Ilrll = {a(r'r)} 1/2, (5)

where F* is the conjugate transformed matrix and c,(r) denotes the maximum eigenvalues of the matrix F.

Note, however, that while the stability of the system (1) or (3) is invariant under a similarity transformation
of the state variables, the matrix norm depends on the transformation, namely in general

]]r][ ¢ ][T-lrTI[.

The stability of randomly sampled control system Eq. (1) is defined as follows.
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Definition 1 (Stability) The randomly sampled control system Eq. (1) is asymptotically stable with
probability one if

P,ob[,lLm I1_*11= 01= 1

for any initial state zo, whereI1_11is the Euclid norm 4 rector =.
Now we define the following notation:

E[_]

and assume that

: Expectation of random variable w,

: Variance of random variable w,

E[{log(llr(A)ll)} _] < oo. (6)

Then a sufficient condition of the asymptotical stability is given in the next proposition.

Proposition 1 (Sufficient Condition) Randomly sampled control system (1) is asymptotically stable with

probability one if

E = EOog(llY-lF(A)Tll)] < 0, (7)

We also have
V

Prob[llT-Ixkll < liT-ix011 exp{k(E + e)}] > 1 - ke_, (8)

for any _ > O, whe,_ V = V_og(llT-tr(A)TII)].

< proof > Assuming z0 ¢ 0 without loss of generality, from Eq. (4) we have

k-1

log(llT-ix_ll/llT- __oll)< y_ log(IIT-_r( _X,)TII).
i=0

Then the proposition is easily proved by the statistical independence of Ai's and Thebyshev's inequality.

< end of proof >

We note that for one-dimensional systems the condition stated in the above proposition is necessary and

sufficient for the aymsptotic stability with probability one [14]. If the sampling interval is constant, the

condition in Prop. 1 is also necessary for the asymptotic stability of multi-dimensional systems.

and g(A) = 7(r)dr, (9)

Now we define

7(A) = log(ll T-'F(A)TII ),

then we have the following proposition.

Proposition 2

i. If the sampling rate A is subject to a Bernoulli distribution where A = c_ with probability p and A = _3

with probability q = 1 - p, then the system is asymptotically stable with probability one, if

pT(c_) + q7(/3) < 0.

it. If the sampling rate A is subject to a uniform distribution ll[a,/3], then the system is asymptotically stable

with probability one, if

g(_) < g(_).

iii. If the sampling rate A is subject to H[a, _] with probability e and to bt[p, v] with probability 1 - e, then

the system is asymptotically stable with probability one, if

6g(fl) g(a)
+ (1 - e) g(u) - g(") < O.

n

_-_ v-l_

The proof is straightforward, so we omit it here.
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3 Design Procedure

Next we discuss a design procedure of a feedback gain K and a matrix T in the following. Now, assume that

system
Jc(t) = Az(t) + Bu(t) (10)

is controllable, then it is well known that the discretized system

Xk+l = (b(A_)x_ + _(Ak)uk (11)

is also controllable for almost all sampling interval Ak [5]. Then we can assign poles {At, i = 1,2,..., n} to

system (11) if poles {)_i} are symmetric with respect to the real axis. itere, we apply Hikita's pole assignment

algorithm[9] to the randomly sampled control systems.

[Algorithm]

step (i)^ For given {hi}, find r-dimensional vectors _i, i = 1,2, ...,n, which makes matrix
T(A) = [vl : '" :v,] non-singular. Vector vi's are given as follows where • = ¢(h) and

=
• if,_i is a real number, then

Vi = ((I) -- )_iln)-llI/_i. (12)

• ifAi and _i+1 are conjugate complex numbers ai + j_i, then

vi = Vli_i - V2i_i+l, and vi+l = Vli_i + V2i_i+l, (13)

where

Vii = {(¢-cqI,_)2 +/?_In}-l(_-oqIn) _1, and V_i : {((_--oli]n)2"_-_In}-l/_i _. (14)

step (it) Feedback gain K is given as follows.

If(h) = -[_1 : ''' : _n]T(/_) -1' (15)

step (iv) Check the stability using Proposition 1 or 2. If not stable, return step (i) and try

another {a,} and�or £.

It is easy tO show that for this T(z_) and K(h), we have

IIT-I(A)F(_)T(A)I[ = m_{IA_l}. (16)

Hence we can use matrices T(h) and K(z_) to calculate 7(A) and g(A). In the next section, we use notations

7(A, z_) and g(A,/_) for 7(A) and g(A), respectively, to show the dependence of the functions on h clearly.

4 Two Dimensional Systems

In this section, we consider control of robot manipulators. We view a robot manipulator as a component

of a large system, such as a space station. The robot controller communicates with the other components
of the system to achieve cooperative actions. Communication between components is considered to have a

longer delay than that within a component. We assume that robot controller has an inner feedback loop

which compensates the nonlinearity of manipulator dynamics and operates independently of the other part

of the system. The robot dynamic system together with the inner feedback loop becomes a linear system. It

is feasible to treat the robot manipulator subsystem as a linear system when integrating and communicating

with the other components. For example, if we use the nonlinear feedback controller developed in [3], we

have n (=DOF of manipulator) decoupled two-dimensional linear systems

[0z(t)= 0 0 1
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Figure 1: function 7(0, 1) and g(0, 1)
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where z(t) = (ei(t), di(t)) is the error vector for the i-th component of outputs and u(t)is the corresponding

input for this component of outputs. If the task is specified in joint space (the joint space control), the i-th
component of output is simply the displacement of the i-th joint and the error vector is composed of the

joint position error and joint velocity error.

We now study the asymptotical stability of this system under the random sampling rate. The corre-

sponding discrete time system is easily obtained for a sampling interval A as follows.

[,Zk+l = 0 1 Ak uk. (18)

We apply the algorithm given above to this system directly. Then we have the following proposition.

Proposition :3 (PD Controller) Assume that {Ai} = {AI,A_} where AI # A2, then we have

K(£) = ((al + as - - 1)/£ + + a X2- 2)/(2£)),

and

7(A, &) = 7(0, 1),

where 0 = A/2x.

The proof is obtained by direct calculation. This proposition implies that the function 7(A,/X) is the

same as the function 7(0, 1) if we use K(A) = (kp/A2, k_/A) instead of K(1) = (kp, k_). Therefore we have

g(A,/_) = &g(O, 1) for the same K(/k). This fact is very useful to design the feedback gain. This will be

shown by examples.

Fig. 1 shows 7(0, 1) and g(O, 1) for A1 = 0.4 and A2 = 0.7, where we have

K(l) = _(O.18,0.81), and T(l) = [ -0.759 -0.934]0.651 0.333 '

and _i was used to make the norm of column vectors of T matrix be equal to one.

Example 1 (Bernoulli Distribution) Let's assume that the sampling interval is subject to Bernoulli dis-

tribution, i.e. A = a with prvbability p and A = fl with probalility q, where a < _, 0 < p < 1, and q = 1 - p.

The sufficient stability condition is given as follows.

pT(c_//k, 1) + qT(fl/2x, 1) < 0. (19)

Note that if& >_ fl/1.96(= tk*) then the system is asymptotically stable for any c_ because 7(0, 1) < 0 for

any 0 < 1.96. But we are generally interested in the smallest ix because it gives us the fastest response.
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Fig. 1 shows that the function 7(0, 1) reaches the minimum value -0.417 at 0 = 1.35. Let O* be the point

which satisfies the following equation.

7(0", 1) = p x 0.417.
q

Then it is clear that _x must be greater than Atom(=/7/0") for Eft. (19).
A suitable value of A can be found from the range Amin < A < A* by a trial-and-error method using

Fig. 1 or Table 1 which gives pairs of{01,02} such that 7(01,1) = 7(02, 1).

(i) Calculate a = -(q/p)7(/7/_x, 1).

(it) Find {01,02} such that 7(01,1) = 7(02,1) < a using Fig. 1 or Table 1.

(iii) Check 01 < c_/A < 02. If so, calculate K(fx). If not so, go back to step (i) with another iX.

For example, if _ = 10 msec, )3 = 30 msec, and p = 0.75, then 0" is about 3.64 and Ami, = 8.24 msec,
while A* = 15.3 msec. If we select _X = 11 msec then a-r(/_/fi,, 1) = -0.278 and _/z_ = 0.91. Therefore

we can try the 6-th row of Table. 1, and we have 01 _ 0.84 < 0.91 < 02 = 1.68. Hence the system is

asymptotically stable for K = -(1488, 73.64).

Example 2 (Uniform Distribution) Now assume that A is subject to a uniform distribution Ll[c_,fl].

The sufficient condition of the asymptotical stability with probability one is given as follows:

a(o,/A, 1)> g(/3/A, 1).

The [unction g(O, 1) has its minimum value at 0 = 1.96. Now we define/_* =/3/19.6 and/%,,_,, =/7/2.89.

IrA >_ A*, then the above sufficient condition is satisfied for any c_. Therefore the system is asymptotically
stable if A > £x*. On the other hand, if fi, < 7train, then the above condition is not satisfied for any a.

Table 1 also gives pairs of {03,04} and the ratio 03104 such that g(03, 1) = g(04,1). /f there is a pair

{03,04} such that _1/3 > 03104, then the system is asymptotically stable for the K(A) where /x = c_lOa.

Therefor we can determine A easily using this table as follows:

(i) Calculate a = 0_1/3.

(it) Find a pair {03, 04} in the Table 1 such that a > 03104.

(it) Calculate2x=  /03 and Ii(2x).

Now assume that o_ = lOmsec and/3 = 30msec, then we have A* = 15.3 reset, A,nin = 10.38 msee, and

a//3 = 1/3 > 0.273 in the Table 1. Therefore we can use o</_i = 0.75 and 7%= 13.33msec. Hence the system
is asymptotically stable with K = -(1065,62.31) if�7 < 36.7 msec. Table 2 shows the IAE (Integration of

Absolute value of the Error)for fifty random streams with the initial condition x(0) = (1.0,0) T. The table

shows that when /3 > 40 rnsec, the STD (STanderd Deviation) and the maximum values of IAE for the

velocity error ei(t) become very large compared to the cases where fl < 35 msec. This means that the system
is still stable but there is a large vibration in the response for A > 40 msec. It is interesting since A selected

above assures the asymptotically stability for fl < 36.7 msec.

Example 3 (Mixed Uniform Distribution) Next we assume that A is subject to a uniform distribution

lg[(_, 13] with probability c and to N[IJ, v] with probability 1 - c. The sufficient condition is given as follows:

z = cg(n/'h' 1) - g(o,/A, 1)
/7/A - ,:,</,'t

+ (1 - _) g(vl_x' 1) - g(pl£x, 1)
.lh - t'1£ < O.

Though the selection of £x becomes a little difficult, we can use the following procedure to estimate an

appropriate £x:

(i) Define 6 = (a +/3)/2.0, /3 = (p + v)/2.0, p = ¢, and q = 1 - V.

(it) Determine _, using the procedure in Exam. I for a = & and/7 = _.

(iii) Check the condition. If satisfied, calculate K(A). If not, try another value for A.
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Figure2: Simulationsfor BernoulliDistribution,Uniform Distribution and Mixed Uniform Distribution
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Table 1: 01, 02 ,03, and 04

"[(81, 1) = 7(82, 1) g(83, 1) = g(84, 1)

7(0, 1) 81 82 g(8, 1) 83 04 83/04
0.00 0.00 1.96 0.000 0.00 2.88 0.000

-0.05 0.18 1.92 -0.009 0.25 2.87 0.087

-0.10 0.33 1.89 -0.039 0.50 2.84 0.176

-0.15 0.46 1.83 -0.094 0.75 '2.78 0.270

-0.20 0.58 1.79 -0.173 1.00 2.69 0.372

-0.25 0.71 1.73 -0.270 1.25 2.56 0.488

-0.30 0.84 1.68 -0.373 1.50 2.39 0.628

-0.35 0.98 1.60 -0.456 1.75 2.17 0.806

-0.40 1.18 1.48 -0.467 1.80 2.12 0.849

Now assume that A is subject to/4[5 msec, 15 msec] with probability e - 0.75 and to//[20 msec, 40 msec]
with probability 0.25. Then we have 6_ = lOmsec, fl = 30msec, p = 0.75, and q = 0.25. If we use A = llmsec

from the result of Exam. 1, then we have E = -0.04 < 0. Therefore the system is asymptotically stable for
the same K = -(1488, 73.64).

Fig. 2 shows the simulations of x(t) for three cases discussed above where x(0) = (1.0, 0) T.

It is easily shown that even if we use a PID controller

zk+l = zk + [1 : O]xk, and uk = Klzk + K2Xk, (20)

or a PD controller with one step delay

uk = K(¢(A)xk_l + k0(/_)Uk_l), (21)

instead of the PD controller given in Prop. 3, we have the similar proposition . Therefore we can determine
z_ easily.
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5 Conclusions

In this paper, the stability of randomly sampled linear control systems was discussed and the following results
were obtained.

1. A sufficient condition for the asymptotical stability in a norm with probability one was obtained for

multi-dimensional systems.

2. For a simple two-dimensional system with PD controllers, a design procedure was shown which was

easily applicable to systems with PID controllers or PD controllers with one step delay.

The results given in this paper are also easily applicable to the robotic control systems where computed
torque controllers or PD controllers with a feedforward term are used at the random sampling rate. The

results will be shown in the near future [14].

Table 2: IAE for U[10 msec,]_ msec]

MEAN STD MAX

el(t) _,(t) ei(t) _,(t) e,(t) _,(_)
25 0.0531 0.9999 0.0022 0.0011 0.0572 1.0020

30 0.0511 1.0039 0.0043 0.0200 0.0561 1.1310

35 0.0498 1.0198 0.0060 0.0515 0.0589 1.2370

40 0.050911.2418 0.0077 0.4305 10.071712.705111
45 0.070912.6492 0.0638 4.4592 0.4354 30.276
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